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ABSTRACT

Suppose I 1is a heteroclinic orbit of a Ck functional differential
equation x(t) = £(x.) with o-limit set o(T) and w-limit set w(T)
being either hyperbolic equilibrium points or periodic orbits. Necessary
and sufficient conditions are given for the existence of an % close to

f in Ck with the prorerty that Q(t) = f(xt) has a heteroclinic

orbit f close to T. The orbits T are obtained from the zeros of

~ * +
a finite number of bifurcation functions G(B,f) € Rd , BE Rd l.
Transversality of T 1is characterized by the nondegeneracy of the

derivative DBG' It is also shown that the £ which have heteroclinic

. k . L. . .
orbits near T are on a C submanifold of finite codimension = max{0,

-ind T} or on the closure of it where ind I' is the index of T.
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§1. 1Introduction.

Let C[-r,0] be the Banach space of continuous functions from

. n . . .
(~r,0] into R with the supremum norm. Suppose x is any continuous

BN N FIPLNEARNS ™ T

function from R into R°, xt(e) = x{t+2), -r < € <0 is an element
in C[-r,0}. Let D be a bounded open ball in C[-r,0], and let xk .
= {f!f € Ck, £: D> R'} be the Banach space with the usual Ck-norm -

‘k' For a given f € xk, suppose the autonomous retarded functional
[

3 -

differential equa: .on

(1.1) x(t) = £(x,) R

has a heteroclinic orbit T < C[-r,0] with a-limit set a(l) and
w-limit set «(T) being hyperbolic periodic orbits or equilibrium -
i points, T U w(I) U a(T) < D.

Suppose X 1is a Banach space, the parameter space, g € Ck(sx X,

") , with g(+,u) € x5, g fl, = o(lu]) as uw >0 and consider

I the perturbation of (1.1) given by
(1.2) x(t) = f(xt) + g(xt,u)
i' + The purpose of this paper is to determine conditions for the
. Grmarn tua Tooem Lo 'w»/'-, -

occurrence of a heteroclinic orbit [ of (1.2)%n a neighborhood

L7 R I
i l‘ pc A Hrer ©
of T’ffor ¥4 in a neighborhood of zero. -We alsc want to specify

i these conditions in terms of computable quantities which can be used et
to determine either the transversality or the order of nontransversality .
/- . ) / / -~ J , ) 1} _-.‘:.:-._
A . L s 7 y s ! e hen T Tt
of the heteroclinic orbit. SRAEE R / fro e -ﬁ-?i*“z:“¥, e rfw,.uq

v
In order to be specific about the results, let us assume first
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clinic orbit if for s,t > 0 large enough such that q_g € wo

that a(l) = Yy w(l) = Y, where Yyr Y, are periodic orbits of periods

. S .
wl, Wy, respectively. Let Wu(Yj), W (Yj) be, respectively, the unstable

and stable sets for Yj’ j =1,2. We refer to these as manifolds, even

though it may not always be true that they are manifolds globally. The

s

local unstable and stable manifolds e (vy.), W
loc ') loc

(vy.) near Y. are
J J

4 .

C -manifolds.

Let %(t): c[-x,0) » C[-r,0], £ > O, be the Ck-semigroup generated

~

by (1.1); that is, T(t): is the solution through ¢ at t = 0. In

the following, we let T =Y {qt}, Yy, =V Yooy }

tER 1 tGR{pl,t 2~ Ut€]R{p2,t

where g, p,, p, are solutions of (1.1).

Definition 1.1. T < Wu(yl) n ws(y2) is said to be a transverse hetero-

loc(a(]‘))
R S . . u L.
and qt € hloc(w(r)) then T(t-s) sends a disc in wloc(a(r)) containing

tr t W T at .
a_, ansverse to oc(u(x)) e

The important concept of general position will play an important

role in the study of nontransversality.

Definition 1.2. Wu(yl) n ws(yz) is said to be in general position if

' is either transverse or, if, for any s,t > O large enough such

u S - .
- ad
that q-s € wloc(Yl) and q € wloc(YZ)' then T(t-s) sends a disc

in wo (Y,) containing g diffeomorphically onto its image and é
loc' 1 -5 3 t

. . - u s

is the only tangent vector in [T(t s)wloc(yl)] n wloc(Y2) at q, -

Definition 1.3. The index of T < w“(yl) n ws(yz) is ind T =

. u ) u
= dim W (Yl) - dim W (YZ).
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Similar results hold when o(T'), w(T) contain equilibria if we

u

define the index of I as ind T = dim W°  (a(l)) - dim W
loc lo

(«(T))
c
+ 8 where B8 = -1 if w(l) is a point and B =0 if w(T) 1is a
periodic orbit.
The proof of the above result uses the method of Liapunov-Schmidt
ax

g€ Rd+l

to determine a set of bifurcation functions G(B,p) € R '
such that there is an heteroclinic orbit Fu if and only if there is

a B(u) such that G(B(w),u) = 0. Furthermore, the transversality of
o is equivalent to saying that DBG is onto. The degree of nontrans-
versality of r¥ is measured by the rank of DBG.

The manner in which the method of Liapunov-Schmidt is employed
follows in the spirit of the investigations of Chow, Hale and Mallet-
Paret [1], Palmer [11) and Lin [7] for the determination of heteroclinic
orbits for periodically perturbed autonomous systems. The case where
the orbits Y. are periodic and the perturbation is autonomous intro-

duces additional technical difficulties. First, the linear variational

equation

(1.3) x(t) = f¢(qt)xt

around T has the bounded solution é(t) which does not approach
zero as either t -+ t«., This implies that (l1.3) does not have an
expnential dichotomy. Second, since the period of Yg changes with
U and the time that it takes to go from a transversal of y; to a
transversal of y; is also changing with u, these guantities must

be determined in some way. This involves several careful time scalings.

G N TR
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If ind T = -1, the concept of general position has been referred
to as quasitransversal in the study of diffeomorphisms (see Sotomayor
(12}, Newhouse and Palis [10]).

For uw small, there is a family of hyperbolic periodic orbits
0

, - s b u
't}, Yo = \j with wloc(yj), W

‘)-"=| Y
Y5 Jj loc

u k
) . ,
] L€R {pj (Yj) being C in

v (see [3)).

One of the main results of the paper is the following.

Theorem. 1f T < Wu(Yl) n WS(YZ), I = max{0,-ind ') then, for &

small there are Ck submanifolds M(I) < xk of codimension I such

that £ + g(+,u) € M(I) if and only if (1.2) has an orbit e wu(Yz)

n WS(Y;) close to T and in general position. Furthermore, £ € CiM(I);

that is, if T is not in general position, then there is a perturbation

g of f such that £ + g € M(I).

In particular, this result implies that there are I 1linearly
independent perturbations to break the heteroclinic orbit T if I > 0;
that is, ind T < 0. This result is a local version of the genericity of
transversal intersection of stable and unstable manifolds of Yl and
Yy If indT> 0, a small perturbation can make it transverse; if
ind T < 0, a small perturbation can break it and there are -ind I ways
to do it. For a more complete discussion of generic properties of func-

tional differential equations, see [6], [8], [9].

AN A AN AR A A A A AR S N M A S e At R g



We now give a brief outline of the contents of each section.
Section 2 is a recollection of known results on stable and unstable
manifold theory. Section 3 is devoted to the development of the
theory of exrnential trichotomies, generalizing the concept of ex-
ponential dichotomies to fit our needs. Section 4 is devoted to more
details about exponential trichotomies including the roughness theorem.
Also, it is shown that the linear variational operator around T defines
a Fredholm operator in the Banach space of continuous bounded functions
in R weighted by a factor eYt for t < 0 and e-Yt for t > 0.

In Section 5, we derive the bifurcation functions G and deduce various
geometric consequences of them. In Section 6, we construct perturbatios
g(+,u), showing the manifold structure of M(I), and that CIM(I) con-

tains all the vector fields having T near T as a heteroclinic orbit.

The authors acknowledge useful conservations with John Mallet-Paret

in the preparation of the paper.
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§2. Hyperbolic equilibria, periodic orbits.

Suppose (1.1) has an equilibrium point X, € R® and let X4 €cC

be defined by ;O(e) = Xgr X < & £ 0, The linear variational equation

about xO is

[

(2.1) x(t) L(xo)xt, L(xo) = Dof(xo)

The solution Xq of (1.1) is hyperbolic if all eigenvalues of the

characteristic eguation of (2.1) have nonzero real parts. Let

{c€C: T(t)d > x. as t + =}

"

s
W (xo) 0
w“‘(xo) ={¢ € C: T(t)¢ is defined for t < O,

T(t): v x, as t> -}

Tre following theorem may be found in [3, p. 230].

Treorem 2.1, If f € Ch(C,}JU , k>1, and x is a hyperbolic equili-

0

brium point of (1.1), then there is a neighborhood U of Xq such that

s s u u
Wloc(xo) = W (xo) nu, wloc(xo) =W (xo) neu

are Ck-manifolds. The approach of solutions to x as t > 4=

—_— 0 —

(or t > -*) 1is exponential.

Suppose p(t) 1is a periodic solution of (1.1) of minimal period

w and let Y = } « C be the corresponding periodic orbit.

Ueer 1Pe
k .
Then necessarily p € C (R, Rn) and pt ¥ 0 for all t € RR. The

linear variational equation about the periodic solution p is




o -
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(2.2) x(t) = Lp(t)xt
2. L =
(2.3) p(t) D¢f(pt)

and é<t) is a solution of (2.2).

Let T(t,s): C > C be the solution operator for (2.2); that is,
T{(t,s}¢ is the solution of (2.2) which coincides with ¢ at t = s.
The characteristic multipliers of (2.2) are the eigenvlaues of the
operator T(w,0). The fact that ét # 0 for all t € R satisfies

(2.2) implies that 1 is a multiplier of (2.2). The orbit Yy is

said to be hyperbolic if
(1) 1 1is a simple multiplier
(11)  [o(T(w,00)N1:) N {z € ¢: |z} = 1} = ¢

The stable set Ws(y) for Y and the unstable set W (Y] of Y

are defined as
Wily) = {c €C: F(t)e »y as t - «}

wu(y) {¢ € C: T(t)¢: 1is defined for ¢t <0

and + y as t + -~}

For any o > 0, define

Wi(y,a) = {¢ € W (y): T(B) ¢ - Py, * 0 as t )

(y): T(t)¢ - Py +~0 as t - -x=}

Wiy, = {2 €w

ettt Sos Lot o DR ki
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The sets ws(y,a), WU(Y,u) are points respectively on the stable
and unstable sets which are synchronized in time with P, -
a

For any neighborhood U of vy, we define

wioc(y,a) = {¢ €w(y,0): T(t)e €U, t > 0}
W (y,a) = {6 € Wiy,a): T(t)6 €U, t < 0}
loc '’ e ! -7

The following theorem may be found in [3, p. 242}, [4].

Theorem 2.2. If f € Ck(C,IJU, k >1 and vy 1is a hyperbolic periodic

orbit of (1.1), then there is a neighborhood U of <y such that

u
\2 R
(YIC‘) ’ wlO

C(Y,a) are Ck-manifolds and

wo(y) = Y

loc
(_<_‘1<u,

S

1 u
wloc(Y,a), W C(Y) = U W C(Y,a)

lo C<a<w lo

are Ck-manifolds. The apprcocach of solutions to Yy either as t + +=

{(or t - -») is exponential.
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§€3. Exponential trichotomies.

For t > s in some interval J, let T(t,s) be a strongly continuous
nonautonoamous semigroup of linear bounded operators in a Banach space X,
that is, T{(t,s) is strongly continuous in t,s, T(s,s) = I, the identity,
T(t,7)T(T,s) = T(t,s), t > 1 > s. It is said that T(t,s) has an exponential

trichotomy on J if there exist projections Pu(t) ’ Ps(t) and Pc(t) =1

- Pu(t) - Ps(t) , t € J, strongly continuous in t, and

T(t,s)Ps(s) Ps(t)T(t,s),

[}

T(t,s)Pu(s) Pu(t)T(t,S),

T(t,s)P (s) P (t)T(t,s),
C C

for t > s in J. We also assume that T(t,s) :_QPU(S) *QPu(t) and

T(t,s) :QPC(S) "QPC(t), t>s in J are isomophisms and T(s,t)

= (r(e,sn 7t

, t >s 1is defined from _QPu(t) onto _@Pu(s) and from
_@Pc(t) onto QPC(S). Furthermore, there exist constants O < v-£ < V4t

< £ and K > 0 such that

IT(t,s)PS(s)l g_xea(t_s) ,

IT(t,s)Pu(t)[ f_Ke-B(t-s)’
lT(t.s)Pc(s)| < Ke(\)+e)(t-s) )
IT(s,£)P_(£) | creTERES o e,

We shall assume that qu(t) ané _QPC(t) are finite dimensional.
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The adjoint operator T*(s,t) of T(t,s) is a weak* continuous
semigroup in X*. If T(t,s) has an exponential trichotomy on J, then
T*(s,t) has an exponential trichotomy on J with projections Pu*(t),
PS*(t) and PC*(t), weak* continuous with respect to t € J, where *
dentoes the adjoint of a continuous operator. Obviously, dim 9?Pu*(t)
= dimﬁpu(t) and dim QPC*(t) = dim Qpc(t). It is also true that
T*(s,t): QPU*(t) > qu*(s) and T*(s,t): _@PC*(t) —»QPC*(S) are

1

isomorphisms and the inverses T*(t,s) = (T*(s,t)) ~ = (T(s,t))* are

properly defined. See [6].

We call g?Pu(t), g?Ps(t) and é?Pc(t) the unstable space,
stable space and center space, since in most applications, 8 > 0, v = O
and@ © < 0. The case of Pc(t) 20, t €3 is also called a shifted
exponential dichotomy if the splitting is not made at Vv = 0.

If (1.1) has a hyperbolic equilibrium point, then the solution
map T(t,s) = D¢%(t—s);o of (2.1) has an exponential dichotomy for
all t >s in €R. This is a special case of an exponential trichotomy
with the dimension of the center space equal to zero and o < 0 < B.
For a proof, see (3, p. 181].

If (1.1) has a hyperbolic periodic orbit Y = Ut€Ii{pt}' then the

solution map T(t,s) =D T(t-s)ps of (2.2) has an exponential trichotomy

¢
for all t > s in R. This is a consequence of the decomposition theory
of linear periodic systems in [3,Ch.8]. In terms of the notation in

(3, p. 203], the decomposition according to the multipliers with moduli

greater than one yields projections Pu and Ps + Pc. with € > 0

sufficiently small, the decomposition according to the multipliers with

PEARY
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moduli greater than 1l-g vyields projections Pu + Pc and Ps. The

adjoint system of (2.2) is then used to obtain the projections Pu’

The proof of the following lemmas, 1, 2 and 3 will not be given
here, since they are similar to the case of exponential dichotomies of
flows generated by ordinary differential equations. See [2]. The
technical treatment of the additional difficulty caused by the nonin-

vertibility of T(t,s) can be found in [7).

Lemma 3.1. Let T(t,s), t > s have exponential trichotomies in R

+ . . * + +
and R , with projections Pu(t), Ps(t), P;(t), t € R, Suppose

- +
that the exponents in R and R are the same, and the unstable

, - + . - +
spaces in R and R , center spaces in R and R have the same

dimensions, 4P _(0) N {g?pc+(0) ¢ RpL(0)) =@, and (P (O) &

Q?P;(O)} né?P:(O) = @#. Then T(t,s) has an exponential trichotomy

. - +
in R=R UR.

Lemma 3.2. Let T(t,s) be defined in (-w,tO] and have an exponential

trichotomy in {-,7], tO > T. Suppose that T(tO,T)(¢l+$2) # 0 for

¢y € é?Pu(T), ¢ € 9?PC(T) and ¢1 + ¢, # 0. Then T(t,s) has an

exponential trichotomy in (-m,tO] with the same exponents, and the

projections Pu(t)’ Ps(t) and Pc(t) approach Pu(t)' Ps(t) and

Pc(t) exponentially as t = =%,

Lemma 3.3, Let T(t,s) be defined in [to,+w) and have an exponential

trichotomy in [T,+®), T > t

* s 'y
0" Suppose_that T (to,r)(ul+u2) # 0 for

vy EZS?PG(T), vy € Q?P;(T) and ¢ +b, # 0. Then T(t,s) has an exponential
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trichotomy in [t0,+w) with the same exponents, and the projections

B _(t), P_(t) and P_(t) approach P (t), P_(t) and P_(t) exponen-

tially as t - +«,
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£4. The linear variational operator.

In this section, we give more details about exponential trichotonies
for the linear variational operator for a heteroclinic orbit T of (1.1).
Let ¥ be the Banach space of all the linear continuous functions

L: C([-r,O],Rn) -+ Rn with the operator norm, Let Ck(R,?U be the

space of Ck maps from R to A with the Ck uniform topology.
Let T(t,s) be the solution operator for the linear functional differ-

ential equation

(4.1) x(t) = L(t)X,

0

with L(-) € Ck(R,ﬂ). Let L(t)?¢ = J dn(t,5)¢(=) for ¢ € Cl[-xr,0]).
~-r

For each t, n(t,€) is an n X n matrix function normalized so that

n(t,® =0 for 5 >0, n(t,%) = n(t,-r) for © < -r, continuous from

the left in ¢ on (-r,0) for each t and has bounded variation on

£ € [-r,0] for each t. Such matrices constitute a Banach space QBO

n c . Y

with ||n(t,*)]] = max [} Var n,.(t,*)]. Each L(-) € C*(R, ¥ is R
l<i<n j=1 B .

associated with a unique n(+,*) ¢ C (Rhg%) and the relation is an —d

- isomorphism from CF(R, ¥ to Ck(R,éab).
é; The formal adjoint equation for (4.1) is
t q
(4.2) y(s) + J y(a)n(a,s-a)da = const., s < t-r.
<

L n*

L- Let BO([-r,O] R ) be the space of functions frem [-r,0] to Rn* which
P

= have bounded rariation on [-r,0] and are continuous from the left with

n
|w| = max zj:l Var wj. The solution operator of (4.2) defines a semigroup

s
& T . n¥ n*
t‘ (s,t), s < t, mapping Ye € BO([-r,Ol,R ) to Yo € BO([-r,O],R ). Ssee [3].

- From (4.2), it is clear that vy(s) is absolutely continuous for s < t-r.

o k
t{, If n€c (R,an). k > 1, we have that

. . (AN
e e W et T T
PR R W P T
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t-r t-r .
y(s) + f y{a n (a,s-a)da + { ylaoyn(a,s-a)da = 0, s £ t-2r
S

So y(s) 1is absolutely continuous for s < t-2r. Therefore vy(s) € Ck

for s <t - (k+l)r, by induction.

Consider eguation (4.l1) in some interval J< R. For any L(.)
s +
€ c@,U, let A(t,L) = nlt,-r ) - n(t,~r) be the jump of n(t,r) at
-r. The function L(*) 1is said to satisfy the H-O property if for any

b campact set K € J, there exists an €, 0 € ¢ < r, such that

—r+¢ ~
3 [ dn(t,€)¢(6) = A(t)¢(-r), t €K,
, -r

and the set {t!detA(t) = 0, t € J} contains only isolated points.

Lemma 4.1. (Hale and Oliva [5]) The solution operator of (4.1) is

one-to-one if L satisfies the H-O property. Furthermore, the class of

L satisfying the H-O property is dense in ck(J,ﬂ) if J is compact and k > 1.

Lemma 4.2. Suppose that L satisfies the H~0 property in J. Then the so-

lution operator f(s,t), s < t, for the formal adjoint equation (4.2) is

one-to-one for all s < t for which [s-r,t] < J.

Proof. Suppose that y(a) is a solution of (4.2 and there exists a
constant t, [t-r,t] € J, such that y(a) = 0 for a < t. We want to
show that there exists p > 0 such that y(a) =0 for o <t +p.
Let € > 0 be the constant in defining the H~O property. For
s < t4e-r, y(s) satisfies the following equation
t+e

) y(s) + [ ylaYnla,s-a)d% = constant.
s

el et e m et e e e et
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R R I O PN N A T TS
LA NPT Vollt SN SIS P Tyl S LS. . e S T L.
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. Since y(s) = Q for s < t

PR}

t+e
- J y(a)n{a,s~x)da = constant,
t

. (4.3)

Lt

& < t+e-Y

Let s = t+e~r in (4.3), Since t < a < t+e, ~r < s—a < €~r, we know,

by H-O, n{a,s-2) = n{x,e~x) for t < o < t+e, therefore

e ey n(a, e-r) o
constant = j ¥ e *

t

If t=-r < s < t+e-r in (4.3), we have

rs+f t+€

| y (o) [n(a,s-u)-n(u,E-r)hmI y(a) (n{a,s-a)-n{o,e-r;}da = G.
t S+Y

But, for t < a < s+7r, nla,s-a) = nla,e-r), and so

t+e
J y(a) [n(a,-¥) - nla,e-r)lda = 0, t-r < s < t+eg-r
S+T

0 for

Differentiating with respect to s, we have y(s+r)-i(s+r)
t < s+r < t+g. There exists 0 < g < ¢ such that A(s+Y) is non-
singular for t < s+¥ < t+p, Thus y(s+r} = 0 for ¢t < s+r S t+p.
This proves the lemma.

If we suppose that T(t,s) has an exponential trichotomy in J,

then so does T*(s,t), s < t, If J = (ew,+o) or [0,+=}), the

relation between the true adjoint operator and the formal adjoint
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operator (see {3, p. 152ff]) implies that i(s,t) also has an exponential

trichotomy in J, with the same exponents a < v-g < v+e < 8.

Lemma 4,3. Suppose that (4.1) has an exponential trichotomy in

J = (-=,0] or [0,+2) or (-=,+») with projections Pu(t), Ps(t)

and Pc(t), and exponents & < Vv-g < v+4E < B, Assume that 6 =

Sup!lB(t)ll, where B(+) € Ck(J,ﬂ). Then the functional differential
t€J

eguation

(4.4) x(t) = L(t)xt + B(t)xt

has an exponential trichotomy in J, with projections §u(t) ﬁs(t) ard

r

ﬁc(t), and exponents a4 < v-e < V+e < B, provided that '6] < 60 for

some constant 50 > 0. Furthermore, ﬁu(t) - Pu(t)’ ﬁs(t) > Ps(t)

and ﬁc(t) > P_(t) uniformly in t and a,v,B,€ > o,v,8,c as & > 0.

Under the same hypotheses on (4.1) and J = (-«, 0] (or [0,«))

and |[B()|] » 0 as t > -2 (or t > =), there is a T > 0 such that

(4.4) has an exponential trichotomy on (-%,71) (or [T1,®)) and iu(t)

- P, (t) >0, P(t) - P_(t) >0, Pc(t) =P (t) >0 as t>-= (or t=*=).

Proof. We observe that, if (4.1) has an exponential dichotomy in J = (-«,0]
or [0,+x) with projections Pu(t) and Ps(t), exponents o < B, and if

§ is small, then (4.4) has an exponential dichotomy in J with projections
ﬁu(t) and Es(t) and exponents ¢ < g. Furthermore ﬁu(t) - Pu(t),

bs(t) + P_(t) uniformly in t € J and %8> oa,B as & - 0. The

proof of these facts is similar to the roughness of exponential dichoto-

mies in the ordina:iy differential equation case, and canke found in [2},
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although necessary changes have to be made to avoid using the inverse
of the solution map too arbitrarily - it is only defined on the unstable
spaces and center spaces.

Now from the exponential trichotomy of (4.1), two exponential

dichotomies can be defined. One is defined by Pi = Pu + Pc' Pi = PS,
and with the exponents a < v-g, Another is defined by Pi = Pu,

2 . . .
Ps = Pc + Ps with exponents v+e& < B. From our previous observation,

for small &, (4.4) has two expcnential dichotomies. One is defined by

R ]

§i, P; with exponents & < v-t. Another is defined by ii, §2 with

~ =~ = i i i i ~ o~
exponents v+e€ < E. Also, Pu, Ps are close to Pu' Ps and a, B, v,¢
are close to u,E, ,¢ 1f & 1is small. There are three cases to be
considered.
. =1 ~2 . .
1Y J = (0,+). 1In this case, g?PS and G?Ps are uniquely determined

-1 < . . . : . . . R
and 52?5 CEZ%S. Tne difference of their codimension is equal to dlng%c.

We see that is(t) = fi(t). ﬁu(t) = ii(t) and ic(t) equals the operation

of ;i(t) followes by a projection from g?;i(t) onto the invariant :
subspaces complementary to gPﬁi(t) in gﬁﬁz(t). iFf;
2) J = (==,7}. In this case, ii and ii are uniquely determined

and ii < ii. The difference of their dimension is equhil to dimE?PC.

We see that ﬁu(t) = ﬁi(t), ﬁs(t) = §i(t) and ?c(t) equals the operation . *“:

of ﬁi followed by a projection from ﬁi(t) onto the invaraint subspace

complementary to g??i(t) in é?ﬁi(t).
3) J = (~«,©). We use 1) and 2) and Lemma 3,1. Notice that
~- ~+ ~ 4
Hr (0) n P (DR (01} =9 and

- . 5+ = [
H_(0) @ RPI(0)) gt (0) =g
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for small &, since these two equalities are rough under small per-
turbations, To show this, one needs that dimé??u and diméibc
are finite.

The proof of the last part of the lemma follows as in the ordinary
differential equations case (see, for example, Palmer [11],. An immecdiate

consequence of Lemma 4.3 is the following,

Theorem 4,4, Let T = té${qt} be a heteroclinic orbit with o(l') and

« (T} Thyperbolic equilibria or periodic orbits. If T(t,s), t > s, is

the solution map for x(t) = f'(qt)xt, then T(t,s) has exponential

trichotomies in (-w,=t}! and [1,+=), T > 0. The orbit I is trans-

verse if and only if

T<~,—r)9?pu<-:) + @pcmeagzps(m = X

or, equivalently,

T(T,-1) (_QPU(—T) ® HP_(~1)) + RP_(1) = X.

T is in general position if and only if T is transverse or

{_qu(—-r) & QPC(—T)} n [T(T,"t)]-l QPS(T) ={0}.

When applying Theorem 4.4 to the special case that I is a homoclinic
orbit and a(l') = w(T) 1is a hyperbolic periodic orbit, we have that
I 1is transverce if and only if T(t,s) has an exponential trichctomy

in R. This can be seen from lemmas 3.1, 3.2 and 3.3.

NS . oL e Ty -
- RN et e v Ty e T e . W e,
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Let Yl and Y2 be two real constants. Let CO(Wl YZ) be the
14
Banach space of all the continuous functions x(t) defined from R
Y.t

' 2
1%, ¢ <0 and |x(t)] ske ©, t2>0

into R such that |x(t)]| < ke

for some constant K > 0. The norm in Co(Yl’Yz) is defined as

‘th Ylt
[1x]] 5 = sup {|x(t)|e , Ix=tyte © 3.
v v,y €20

k .
Let Ck( ) be the BRarach space of all the C functions x(t)

.Yl IY2
(1)

such that x (t) € CO(Yl,Yz), i 0,1,...,k, with the norm

"

KW
el R
C (\l.Y2) i=0 C (Yl’Yz)
k . k+1,
For L(*) € ¢ (R,A), k > 0, the linear operator Foi C g Y)
k . . _ odx(t) _
o (Yl.Yz) is defined as PL. X h, h(t) = =t L(t)xt. We

k .
write FL(‘{l Yz) to indicate the space C (Yl,Yz) under consideration.

Lemma 4.5. Suppose that L(-) € CK(r,%) and that (4.1) has shifted

- +
dichotomies in R and R with exponents oy < Bl and o, < 82,

respectively. Let a; <Yy < Bl and a, <y, < 82. Then FL:

Ck+l(Y Y ) > Ck(Y ,Y.) is Fredholm of index I(F_ ) with
1’2 1’2 L° —
. . +
I(F) = dlmﬁzum) amﬁpuw)

M) = ((T(£,00¢) (0): ¢ € P (0) ngp;'w), t € R}

R I S AP L R T T e T T e T T T T T T e T T T

TR S-Sl S SO A WA S

Sanca
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‘ k ® _ ‘f}”-
.g?(FL) ={h: h€c (Y0¥, J_my(t)h(t) =0 U

for all the solutions of the formal adjoint

equation y(t) such that

-;2t -alt

ly(t) | < ke ,t >0 |yt < Ke ,t <0

i A

-y - S
e txt and g(t) = e Yth(t), where Yy = Yl for LT

Proof. Let u(t)
t <0 and y = Y, for t > 0, respectively. The function wu: R = C[-r,0}

does not satisfy any delay eguation, but, from the variation of constraints

formula (see [3]),

t -
(4.5) x = T(t,s)x_ + { T(t,v)X h(v)dv, s < t, 2
t S 0 —
s
we have
t - ;;
(4.€) u(t) = T (t,s)u(s) + f T (t,v)X g(v)dv, s < t, o
Y s ¥ © L.
-y ({t-s) _ . "
where T_(t,s) = T{(t,s)e and Y = vy or Y depending on

1
or 0 < s < t, and Xo(e) =0 for £ <0, X

Y 2
s <t<o0 (0) = I, the

0

identity. The operator TY(t'S) has the usual exponential dichotomies

(t) = PO(t).
S

m i+

- + . . . * *
on R and R with projections Puw(t) = Pu(t) and P
Discussion of the usual exponential dichotomy case can be found in

{7], where we proved that the bounded solutions for (4.6), when < © G,

are

fu(t) = (T_(t,008) (0)|¢ € @F_(0) N PP._(0)).
Y uy sY
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Also, the set of the bounded functions g(t) such that (4.6) admits

a bounded solution wu(t) is
&«
{g(t) bounded=I E(t)Yg(t) = 0,

*

+ -
= *
£(t) <Ty(t,0)c.xo>, z e%m(m ng?PsY(O)}.

Returning to (4.5) and observing that T;(s,t) = T*(s,t)e—Y(t_s), one

easily obtains the desired results in the lemma.

Lemma 4.6. Assume all of the hypotheses of Lemma 4.5 except that the

shifted dichotomies are valid only in (-w,-7] and [1,+=), 1 > G.

Then all the results in Lemma 4.5 are valid except that

. =y s +
(4.7) I(FL) = dlm_@Pu(—.) dlm_@Pu(T),
MEF ) = ((T(t,002)(0): t € R, ¢ € é?P;(—r)
+
and T(7,-1)¢ € é?PS(T)}

Proof. We first assume that there is a functiorn A € CR(R,ﬂ), with

compact support in (-1~1,7T+l) and i(t) = (L(t) + A(t))xt has shifted
- + .

exponential dichotomies in R and R . The existence of such an A

shall be discussed later. It is clear that z(y)(t) = A(t)yt is a compact

k

k+
operator as a map from C(C 1(Y Yz) to C (Y, Y,), From Lemma 4,5,

2

1 1,

PL+A is Fredholm. From the perturbation theorem of Fredholm operators,

e e T T e

RS R N
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~T,
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F, 1is Fredholm and indFL = indFL+ This proves 4.7.

A

The characterization of ,41FL) is obvious. Let vy(t) be a
-E.t
solution of the formal adjoint equation for (4.1), and |y(t)‘ < Ke 2

t >0, !y(t)] < Ke‘alt, t < 0. Such solutions {y(-)} form a finite

dimensional linear space y. If h € 5??L, then Jm y{t)h(t) = 0 for
o -

all y € ¥. Therefore, 9?FL < {h: J y(tyh(t)dt = 0, for all y € V¥}.
P

One can show that QimAF, - dim¥ = dimgPP] (1) - dimGPP) (T). The

proof is omitted since it is similar to standard arguments relating

an operator to its adjoint (see [6])). Now, from the definition

IndFL = dixr/}"FL - codim_@FL, we have dimVY = codim _QFL, proving the

characterization for E?FL.

It remains to show the existence of A: R -+ ¥, First, we assume
that k > 1. By Lemma 4.1 and 4.2, we can find B, € FR A, suf-

ficiently small and with compact support in (-7 T+%), such that

Y
x(t) = (L() + B,(£))x, is H-0 in [-T,7]. Thus, T(t,s) and T(s,t)
are one-to-one in [-1,1]. The perturbed system has exponential di-
chotomies in (~=<,-.] and [1,+*) by Lemma 4.3, and in R and R+
by Lemmas 3.2 and 3.3. If k = 0, we can use mollifiers to find

Bl(t) € CO(R,ﬂ), with compact support in (-1-1,7+l) so that L(t) =

L(t) * B, (£) € Cl([-‘r-%,r%] ). Then A(t) =B (t) + éz(t) is the

desired perturbation where éz(t) is constructed from L(t) as above.

l.f PR .,:.".
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§5, Bifurcation functions.

In this section, we obtain bifurcation functions whose zeros will

; - : L
be in one~to-one correspondence to heteroclinic orbits T~ of (1.2).

These functions will also be used to characterize the transversality

or degree of nontransversality of Tt )

The linear variational equation around T = UtGIi{qt} is

0
< (t) = ' = - -
(5.1) x(t) D¢f (qt)xt Lq(t)xt f § an(t,8)x (t+8) .
with the formal adjoint equation being k
t
(5.2) y(s) + J y{a)n(a,s-a)da = constant, s < t-r

S

Since qt > ofT) = Yl as t » -, qt -+ w(l) = Y, as t - 4+

with asymptotic phase, we may assume that Y, < Utemp1 gr Yo = Utemp2 t
’ ’

where pl(t), p2(t) are periodic solutions of (1.1) and qt ~ pl,t +> 0
as t o+ -, q - p2,t + 0 as t - «». Thus, }{;:
||D¢f'(qt) - D¢f‘(p1't)|[ >0 as t o> -
(5.3)
1 - ' ©
\‘D¢f (qt) D¢f (p2't)|l -0 as t » .

We have already remarked in Section 2 that x(t) = Lp (t)xt and x(t) i

=L (t)xt have exponential trichotomies on R. This fact, together

2

R T,
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with (5.3) and Lemma 4.3 imply that there is a 1 > 0 such that (5.1) éﬁg
has an exponential trichotomy on (+«,~t] and [1,*) with exponents ﬁﬁin
ay < 0 < Bl and any <« 0 < 52’ respectively, Let <y > 0 be a small ;?E;
constant such that 0 < y < min{}all,lazl,ﬁl,ﬁz}. E;i

For u small, let YW=y {pu }, yu = U {pu } be the SRS
1 TtER T1,t77 2 Tt€R C2,t
hyperbolic periodic orbits of (1.2) with pg = pl, pg = P, As remarked .:
earlier, we wish to determine those solutions x" (t) of (1.2) whose ~€
orbits TIY are close to T and have u(Fu) = Yg, w(Tu) = Y;. We also % .
want to do this by considering x" as a small variation from the function ii R
g that describes T. To do this, extreme care must be exercised in ;;
order to have xu as a small perturbation of g uniformly in t. j;:;

Several time scalings are involved and that is the reason for so much

of the following cumbersome notation. ;;z

Let B: R > Ig' be a Cm—function with é(t) =0 for t < -1,

il

B(t) 1 for t>1. Let I, (t) bea ¢ -function such that L(t) =0

for t < r+l, cz(t) =1 for t > r+2 and let ;l(t) = Cz(-t). If uj(u)

is the period of pj u(t) and wj(u)/wj(O) = l+Bj(U), j =1,2, and N
, .

o € R, © are small, define A

w
i}

Ble,) = BE)B, () + (1-B(£))B (w) -

(5.4) wlt) = wla,p) (£) = ;1<t)lp§((1+e>t)—pl<t)1

+ T, (8) [p) ((1+8)t+a) - p,(t)] s

MRS et .
RSN

Pl B ~ st a
DR DT N I YA JPUIL R DR
-t . .

» L PG TY IS NN reTw.aa ..-\l‘A.
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Since
L
(5.5) |pf (48, ()8 = p (8) =o(july as w0 =
0
W
’.ﬁ.
it follows that B-.
(5.6) wit) = wia,w)(t) = o(fa] + lu]) as (o) » (0,0). N
-
We need one other observation. For -r 2 8 2 0, consider the -"_ff-;f:
eguation for I, ':.-"_f:.‘
h}.,....
(1+B(t+2,u)) T + t(B(t+Z,u) = B(E, 1)) = 6 -
By the Implicit Function Theorem, there is a solution [ = I (%,t,p) - —
=6 +0(Jy]) as w > 0. 1In particular, ¢ = 6(1-*81(11))“:L for t < -1, ::j.'::.'
g = 5(1+82(u))'1 for t > 1. For any function x: R -~ R, we define ::_’ ::
e -
X o fron R to C([-r,01,R") by the relation X, 5(6) = x(e+2(%,t,u)), —
r r P
~r < & < 0O, ..
With the above notation, let us make the transformation =x((148)t) {:}:;
" = g{t) + wl{a,p)(t) + z(t). The eguation for =z is —
. (5.7) F(z) (t) = N(z,u,a,t) o
:;.- where A::::
!‘ . ~
)
eSS NI
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F(z) (t) = z(t) - Lq(t)zt

N(z,1,a,t) = M(z,p,a,t) = F(w)
(5.8)

a8
Mlz,u,0,t) = (SR [£lQy ghey otz g)+a(Qy ghoy o*2, got)]

- flg) - Lq(t)wt - Lq(t)zt -g}i}

Any solution xu(t) of (1.2) with o-limit set Y: and w-limit
B . .
<
set Y2 must satisfy (5.7), (5.8). If 0O <Y mln{[a1|,|a2[,81,82},

where o, < 0 < 81, o

1 <0 < 82 are respectively the exponents for the

2
trichotomy of (5.1) on (-=,-1], [T,%®), then it follows that, probably after

a time shift in xu(t), zu(t)=xu((1+8)t)-q(t)-w(a.u)(t) must approach zero as

. t - PR
t>-o like e! and must approach zeroc as t—+ ®like e Yt. Therefore, it is '
sufficient to consider only the solutions of (5.7), (5.8) in Cl(Y,—Y).

The map F: Cl(Y,-Y) - CO(Y,—Y) is Fredholm by Lemma 4.6. To

estimate N(z,u,a,*) as a map from Cl(Y,-Y) to CO(Y,—Y), we need
the following observation.
For |ty sufficiently large, one can use the definition (5.4) and

show that )

(5.9) Flult = (1+B)[f(pt'e+wt B) + g(pt,8+wt B,u) - f(pt) - Lq(t)wt

where B = 82, P=rp, if t is large and positive and B = Bl, P =D

if t is large and negative.
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Using (5.8), (5.9), (5.6), (5.5) and the fact that = -2z, =

t,B t
O(lu)), one can show that

IN(z,u,a,) ] 0 = o(lu] + lal + |2l 1 )

C (v,-v) C(Y,=y])
as (u,a2,z) -~ (0,C,0), - 'ﬁl
Let E1 be a projection from Cl(Y,'Y) onto _#{F} and E2 ; ~f{
a projection from CO(Y,—Y) onto H.F). Then (5.7) is equivalent to " f,l
(5.10) F(2) = E,N(z,,3,%) RO

(5.11) 0= (I-Ez)N(Z,U¢G,')

If K: 5?(E2) > 5?(I-El) is a right inverse of F, then X is

i

bounded since F 1is Fredholm. If {y, i =1,2,...,d8} 1is a basis for
A(F) and z=z='=+§d kyi k = (k ..k)E]Rd z* € P(I-E.)
i=1 Tif ! 1'°°°'a ! 1"
then (5.10) is equivalent to
d i
(5.12) z* = YEN(* + ) K.y o)

i=1 1

Using the contraction mapping principle, one can show there are
constants « > o, u > o, k > 0 such that (5.12) has a unique solution
2% = z*(a,k,m) € Cliy,~y) for |a| <@, |k} <X, |u] <%, z*(0,0,0) = 0. -
By induction, one can actually show that z*(a,k,u) € Ck(y,-y). If we i

a . C
consider z* as a map from Rx R x X into C (Y,-Y) and use an
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argument similar to the one for the proof of Lemma 2.2, chapter 10 of
d 0 . K
[31, then one can show that z*: R xR % X > C (y,-y) is C .
. 1 ar . .
Let ¥ = {y~,,..,¥ } be a basis for the bounded solutions of
the formal adjoint equation (5.2). By Lemma 4.6, equation (5.10), (5.11)
are equivalent to

(5.13) cj<a,k,u)d3f[ W onE ek ©+3 ke tae = o,

i=1

j=1,2,...,8%,

The functions G? are called the bifurcation functions and the perturbed
equation has a heteroclinic solution in a neighborhood of T U o(T) U w(I)
if and only if G2(a,k,u) =0, j = 1,...,d8* for some |a| < &, |k| < X
and !LI < :ﬂ The heteroclinic solution is, up to a phase shift,
. d i
(5.14)  x"((1+8)8) = q(t) + wla,mw) (B) + z* (k) () + § K.y (v).
i=1

Further discussion of the bifurcation function needs the following

lemma in which a(T) and (') are hyperbolic periodic orbits or

equilibria.

Lemma 5.1. The formal adjoint equation (5.2) has a bounded solution

v € Cl(Y,-Y) U Cl(-Y.-Y) U Cl(Y,Y) if and only if

(H) both «af(l'}) and u(I') are hyperbolic periodic

orbits and é is the only bounded solution of

(5.1) not in CI(Y,-Y)
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In all the other cases, bounded solutions of the formal adjoint equation

(5.2) are in Cl(Y,“Y).

Proof. It is obvious that all the bounded solutions Y of (5.2) are
in Cl(y,—y) if a(T') and w(T) are eguilibria.

Suppose that a(l') is an equilibrium and w(l') is a periodic
orbit. If F(a,B) = F restricted to Cl(a,ﬁ), then ind F(-vy,y) =
ind F(Y,-Y) +1, and. dim #F(-y,y) = AimAF(y,-y) + 1., Therefore,
codim PF(-v, Y) = codim HPF(Y,-Y). This shows that all the bounded
solutions of (5.2) are in Cl(Y,—Y). Similarly, we can prove that all
the bounded solutions of (5.3) are in Cl(Y.—Y) if a(T) is a periodic
orbit and «(7) an equilibrium.

There are two cases when o(I') and w(l') are both periodic orbits.

Case I.

There are two linearly independent bounded solutions of (5.1), one
is é(t), another one approaches zero a t = -», and approaches é(t)
as t ™ +%, exponentially. In this case, indF(-Y,Y) = indF( v,-Y) + 2,
and dim AF(-Yv, Y) = dinAr(Y,-Y) + 2. Thus, all the bounded solutions

of (5.2) are in Cl(Y,-Y).

Case II.
Suppose (H) is satisfied; that is, there is only one bounded solution

of (5.1), é(t), up to the linear combination of solutions in Cl(Y,—Y).

In this case, indF(-Y,Y) = indfF(y,-y) + 2, and dimAF(-Y,Y) = dimAF(y,-Yy)+1.

Thus, codim PF(-Y,Y) = codim AF(Y,-Y) - 1. This shows that there is a

. 1 .
bounded solution Yy~ of (5.2), wl 4 Cl(Y,'Y). By comparing F(y,+Yy)

. 1
with F(y,y) and also F(y,-v) with F(-y,-Y), one shows that U € C (-v,-y)
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and U & CI(Y,Y). This completes the proof of the lemma.

To study the bifurcation functions Gj(a,k,u) in (5.13) in more
detail, we need the bilinear form associated with (5.1), (5,2). For
any U satisfying (5.2), ¢ € C([—r,O],Rn), let

t 0 t+r
(¥ ,¢)t = P(t)e(0) + J de[J Y (a)n(a,8+t-a)dal ¢ (6)
- t
t
where . (8) = Y¢(t+s), 0 < s < r.

1f the ¢ in (5.13) belong to C (y,~y) and w is defined in

(5.4), then

=]

53 _ it )
J—ww (t)F(w) (t)dt = (¥ ,wt)t » = Q.

Therefore, with the exception of Case (H) of Lemma 5,1, we may replace
N in (5,13) by M defined in (5.8); that is, drop the term F(w) in

N.

Lemma 5.2. Assume (H) of Lemma 5.1 and let wl(t) be the bounded

solution of (5.2) not in Ci(Y,-Y) U Ci(-Y,—Y) u Ci(Y.Y). Then

BGl(0,0,0)/au # 0.

Remark 5.3. In case (H) of Lemma 5.1, Lemma 5,2 says that we can
determine the variation of the transition time from a cross section of
a(T) to another one of w(l'). In the case of ordinary differential equa-

. iy s . R
tions, it is not hard to construct an example with dlmloc(u(r)) = 2 and

. u . .. .
dim wloc(a(r)) = 1, and there are a continuum of heteroclinic orbits from

u - L , . L.
Wloc(ﬁ(x)) hitting a cross section of w(l') at a continuum of transition




EAA R S AT e pe S s e p e

-31-

times. Thus, the variation of transition time ¢ cannot always be

determined.

Proof of Lemma 5.2. Since z* =0, w =0 for a =0, u = 0, k=0, it

follows from (5.8) that 9M(z,v,a,*)/9z =0 for u =20, a =0, k = Q.

Therefore, (5.13) implies that BGI(O,O,O)/aa =
o

—J L F (3. (0,0) 730) (t)at = -<¢1't.(aw(o,0)/aa‘t) ** It is easy

t

to see that 3u(0,0)/3a = Cz(t)ﬁz(t), and so (wl'E(Bw(0,0)/aa)t)t + 0
as t + ==, For solutions y(t) of (5,2) and ¢ € C[-r,0], the bilinear

1

form (. 't,t)t defines an element y*(t) € C*{[-r,0]}, (¢1't ¢

P8) TR, 4
Y*(t) is a trajectory of T*{(s,t) which has exponential trichotories

in (-=,-7} andé [1,+*). The hypothesis on wl(t) implies that *(1)

€ RPr(7) @ RPI(T), with PA(TIUA(T) # 0. We also know that x(t) -

Dcf" )xt = 0 has exponential trichotomy with projections iu' is

Pot
and ﬁc. Lemma 4.3 implies that Pc(t) ~> ﬁc(t) exponentially as t = +«.
Therefore, Pé(t) - ﬁ;(t) exponentially as t > +®., Thus y*(t) =
T*(t,T)u*(1) = T*(t,T)P;(T)w*(T) + T*(t.T)PG(T)W*(T) g T*(t.T)P;(T)w*(T)-
Therefore, ﬁ;(t);*(t) > T*(t,T)PX(T)Y*(1), as t > +=. Now, clearly,
lim inf!P"(t)u*{t)| >0. For large t, L. (t) = 1. Therefore, (Ll't,
e C 2

3 = <% . = <DP* * b . hd . .
(zzpz)t)t <y (t)'p2,t> <Pc(t)w (t),pz’t>. Since Pyt is a basis
for the simple multiplier one of the linear variational equations about

P,, the latter quantity is nonzero. This proves the lemma.
> y

We now state the main result of this section:

Theorem 5.4. Let T = Y {qt} be a heteroclinic orbit with o(T) =
tER
l ' - . . .
v and = U h rbolic periodic orbits, Then
tEIépl,t} w(l t€n§p2't} yperbolic p
there is a heteroclinic orbit ru = U {xt} in a neighborhood of
tER

I U ofl) U ofr), with x" as in (5.14), if and only if GJ(a,k,;) = O,

VST TR RO SR VSR PP T N P TS e - S e T e L R -
Am o iy r SN B W L VAL PR WA PR S S N S It S L TR
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5= 1,...,a%, x €&, Ja| <5, x| <k |ul <3¥ and 67 is given in (5.13).

If LI € Cl(y,¢y), then N in (5.13) can be replaced by M in (5.8).

The only situation in which there is a wl 4 Cl(y,—y) is when (H)

of Lemma 5.1 is satisfied. 1In this case, 8G1(0,0,O)/3u # 0, Moreover,

0,0 .0
1, R

d-d* = ind T~ 1. if GJ( k )y =0, 3=1,,,.,d4*%, then the hetero-

E
clinic orbit T 0 defined by 00, ko, Uo in (5.14) is transverse if

and only if the rank of the following matrix is 4d¥*,

(5.15) { 367 (a”, k0 1) 3G (kL)

v . Y }, j=1,2,...,4*%.
Proof. Only the transversality needs a proof. This will be postponed
until the end of the next section since it involves special types of

perturbations of the vector field.

We end this section with some formula for the derivatives of Gj.
It is easy to show 353(0,0,0)/aki = 0. Also aGJ(O,O,O)/aa = 0 except
when (H) of Lemma 5.1 is satisfied. It is not hard to show that

2.3 ® \ £ m
3°67(0,0,0) /3k , ok = J v O£ () (v, yg ) (Bt

N R D . i
= I_ww (t) f (qt)((czpz)t.yt)(t)dt.

However, the formula for aG]/au, BZGJ/Bpaki and 32Gj/a;ag are difficult
to compute for general perturbations g(¢,p). We therefore consider only
specific perturbations g(¢,u) such that g(pi t,n) =0, i=1.,2. We

14

then have

BN . . . . ot e Tt et . .
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(5.17)

(5.18)

where

...... L.
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{s0]

r R
] ¢3ct>[ag<qt,0>/ap1ct)at

i

3G (0,0,0) /3y

3263(0,0,0)/auaki

fl

J—mw](t)lf"(qt)((32*/3p)t,Y;)

+(329(qt;0)/3U3¢XYt)](t)dt

23 D \ .
3°G7(0,0,0) /3uda = [.ww () [f (qt)((BZ*/Bu)t. (Cz pz)t)

), l(t)at

2 .o
+ (3 g(qt,O)/Buééxgzpz N

dz*/3u = 3z*(0,0,0) /du.
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§6. Perturbations to heteroclinic orbits.

+ . .
For f € xk 1, k >1, in (1.1), we want to show first that there

exists a g € Xk, arbitrarily small such that (1.2) has T as a
heteroclinic orkit in general position. Assume that (5.1) has exponen-
tial trichotomies in (-m,—to] and [to,+w). Without loss of generality,
we assume that the orbit segment {xt =gt € [-to-c,t +e£)} has no

0

intersection with o(T) and w(T), and to > (k+2)x/2.
First, we need a lemma for the perturbation of linear equations.

Suppose that the linear functional differential equation (4.1),

L(*) € Ck(R,ﬂ), k > 0, has shifted exponential dichotomies in J., =

1

(-=,t.] and J, = [-t _,+=),swh t. > kt2 r 1is a constant, with

'ty n 5 = o’ ,swhere o > n ,

N - - + +
projection Pu(t), Ps(t) «Pu(t),PS(t)) and exponents &1 < 81
(uz < 82) for t € Jl (t € J2). Let Yy and Y, be two real
constants, 2, < y, < R and a, < vy, < B,, F=F_: Ck+l(Y 'YS)

| 1 "1 2 2 2 L 1772
d Ck(yl,y2) ke defined as in &4, FL(h)(t) = dh(t)/dt - L(t)ht.
Assume that dim{y?P;(O) n QP;(O)} = b, dim_QP;(O) = b+c, and
+

dir 9??u(0) = ¢+c, where b > 0, e > 0, ¢ > 0 are integers. If T(t,s)

is the solution operator of (4.1), then, for any Yo € 5??&(0), Y, =

T(t,0)y, is defined for all t € R. Also, it is clear that vy, €£?T;(t)

for t € Jl. We shall use [61,...,¢m] to denote the linear space spanned

Lemma 6.1. Assume that all the above are satisfied. ILet a be an integer,

+1

. : 1 a _a b . -
0 < a < min(b,e). Take any basis {yo,...,yo,y0 ,...,yo} in Q?PU(O)

n é?P;(O) and let y: R » R° be the solution of (4.1) through yé at

i i
zero, y, = T(t.O)}O-
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(6.1) x(t) = L(t)xt + sB(t)xt ’
and the rator F : Ck+l( ) > Ck( ), where is a real
ope o I+ B Yl'Yz yllyz ’ € r
parameter. Then there exists an €6 >0 and a B(-+) € Ck(RﬁW) with
. . a+l b
compact support in (-to,to) and B(t)¢ =0 if ¢ € [yt ,...,yt]
! ‘ = ] = =
such that, for ¢! < ey ’4«FL+5B) {o} if a = b, ’41FL+5B)

ly ree.0y 3 if a2 < b.

Proof. By Lemma 4.5, FL is Fredholm with Index = (b+c) - (c+e) = b-e.
Since dim ,4(FL) = b, we have codim ,WKFL) = e. Let Y be the st
n*

of functions from R to R corresponding to the linear space of

the solutions of the formal adjoint equation of (4.1) defined in R,

-th —alt
L€y if (] < ke »t >0, lutt)]| <ke , t < 0. Then ¥
. . . ) 1 e 1 e .
is of dimension e and VY = [¢ ,...,¢ )] where ¢ ,...,U are linearly
independent.
b+1 b+c

1

Choose {yO pee Yy } 5?P;(O) such that {yg}, j=1,...,b%c

]

form a basis in g?P;(O). Define vy as the solution of (4.1) through

yé, yj = T(t,O)yg, t€R, j=1,...,b+c. Obviously, {yi}, j =1,...,b+c,

a

t] and

is a basis in g?Pu(t), t € Jl' Let ¢(t) = [yi,...,y

a

¢ ={z: R » Cl[-r,0]: z = Xj=1

j o . .
N bjyt' bj €ER, j 1,...,a}. We now define

~ n
B(t): c[-r,0] - R, t € (—to,to) as

, - . a+l b+c -
(1) B(t:)zt =0 if z, € [yt reeeaYy 1 QQPS(t),
(i) é(t)y; = (.(t))", i=1,2,...,a, where <1 denotes the

transpose, and extend it linearly to ¢(t).

L Tl e T T TS T e T R S T ST B R
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It is not hard to show that B(t) is Ck for t € (—to,to-(k+2)r).
We proceed as follows. Let {?i}, i=1,...,b+c, be an invariant basis
-* . ~ -1
for Pu (t), t € (—m,tO], i.e., T*(s,t)wt = ws' -= <8 <t :_to. Assume
-4 3 .
< = +C.
that Lt,yt> éij' 1 <1, J < b+c Then
-~ I O e
(6.2) B(O)s = ) (L () <y o> ’
i=1 G
: 4
From the relation of the true adjoint and formal adjoint operators, we T "

O—r, i=1,...,b+tc, such

-r, where ¢ (t), i =1,...,b+c,

. . ~i
know that there exist functions Yy (t), t < ¢t

~i,t

that <il,0> = (v1'7,¢), for t <t

t 0

are solutions of the formal adjoint of (4.1) and

0

. 0 o
,C)t = ¢h(v)e(o) + J delf wl(t—i)n(t‘€,£+€)d£]¢(6)-
-r -r

i,t

(0

From the comment after (4.2), @l are Ck functions for t € (—m,to—(l+k)r).

e i . . s i
Identifying wt with a function of bounded variation 4y (t,+) € BO =

_9%([—r,0],Rn*) we have

e, = o,

0 _. 0 _. .
J o (t-2)n(t-g,E+68) a8 - J PE=En(t-g, a8 - ().
-

-

VL, )

]

After a few computations and exploiting the fact that n(-+,+) € Ck(RHQ%),
we see that Ei(-,-) € Ck((—w,to-(l+k)r),Bo). This implies that <Ez,'>

is Ck((-w,to-(1+k)r),ﬂ). The Ck smoothness of ﬁ(t) follows from

(6.2).
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We observe that B(t) sends ¢ injectively into VY. We also

observe that, if ¥ € ¥, u(t) # O for t € R, then ZO0

[1,7+r]

restricted to some interval [1,1+r] € (-to,to-(k+l)r). Otherwise,

since T(s,t) has a shifted exponential dichotomy in [—to,+m), the

assertion tl[r T+r] =2 0 together with the exponential estimate for
!

elements in ¥ imply that {(t) = 0 for all t € R.

Let B(t) = £(t)B(t), where £: R~ R is C, E(t)

1 on [71,1+r],

£(t) has compact support in (~t0,t -(k+1)r), and §&(t) > 0 for t € R.

0

If we extend B(t) = 0 outside (—to,to), then B(:) € Ck(R.ﬂ;. It is

easy to see that, for any z € ¢, 2, 2 0, t € R, there exists at least

one U € Y such that

o
(6.3) J <;(t),B(t)zt> # 0.
For example, we can choose {(t) = é(t)zt.
We have to show that B(t) 1is the desired perturbation. Solutions :jif}‘
of (6.1) are denoted by y(t,e) with vy(t,e) = y(t,0) for ¢t f.to' Iif f:?“
u(t) = 5%y(t,c)l€=o, then u(t) satisfies the following system

(6.4) u(t) = L(t)ut + B(t)yt, o

u(t) = 0, t < -t

k+
If y € ¢, yt Z 0, t € R, we infer that u g€ C l(Yl,Y2) in (6.4).

For otherwise, B(t)yt €£2%FL) which contradicts (6,3). Moreover, yu ¢

k+
k.. . c 1

C (Wl,v ). For otherwise, (6.4) implies that u € (Y_.Y.))

ll ) . Sr——
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Let uj(t) be the solution of (6.4} corresponding to the forcing

term B(t)yi. We show that {ui,...,u:,y$+l,...,y:+c}, t >t are

a b+l

b+c + . .-
-,Utryt ,---'Yt 1N @Ps(t) = 10]‘1 .

linearly independent and [ut,. .

t >t .

0 For this, suppose that there exist real constants {aj}, j =1, ")

. a . b+c i .
.,b such that u, = y a.ug + 2 @Yy € _@Ps(t), t >t
j=1 I j=b+1 I

easy to see that u(t) is a solution of (6.4) with the initial condition
b+c .

u(t) = 5 cjy](t) for t < -to, corresponding to the unique forcing ROAT

j=b+l "4 . ST

o= b 1 ; - + B

B(t)yt B(t) 1'21 ajyt , vy € 9. But ut€c (yl,'yz), since ut€ Ps(t), tito T

and ﬁt € _@P;-(t) b < -to. This would be a contradiction to (6.3) unless

or It is ‘.:“

a, =0, 3 =1,...,a, b+l,...,b+c.

+ + -
We now prove that {yl(-,e),...,y:(-,e),yi l(-,e:),...,y};z C(e,e)} are b

t
linearly independent and [yi(- 1E) reen ,y:(' ,€) ,yk;+l(° 1€) e ,y:+c(' e)1’

» 0 < |el < €., E is some small constant.

+ - f
N Hr_(t) = {0} for t >t o’ o

0
It suffices to show that [yi (*,e) - yi (-,O),-..,y: (':O)IY:-H(':C):-.-. b=
b+c + ' + 0 0
(*,e)] N @ (£.) = {0} since y:J (+,0) E#®P (t), j=1,...,a.
to s 0 tO s 0
. + +
That is, [sul +o(€), ..., eu> +o(s:),yb 1+o(1),...,yb Co(1)] N @P+(t )y = {0}. .
t, t, t, t, s 0 S
Dividing by € in the first a vectors, we obtain [uil: +o(l),... ,u: +o(l), Lo
b+1 b+c + . 0 . .0
+o0(l),...,y, +o(1)] N &@p (t ) = {0}. Since the last equality is
to tO s 0

valid if o(l)'s are dropped, it is valid if ¢ is sufficiently small.

y

Y

Finally, the proof of the lemma is completed by observing that -

QP;(-'CO) and QP;(to) are independent of «¢. _' ..._(-

. nN
Define (SN. Cl{-r,0] = R by 6N¢

(¢ (0) ,¢(-x/N), ..., ¢ (~r+xr/N)
= (wO""’wN-l)’ wj € Rn, 3i=0,...,N~1. For N sufficiently large, AR

¢ - 6N¢ embeds the periodic orbits Yj = = 1,2, and the

U . 0]
ter Py e’
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\

segment of the heteroclinic orbit Q- t € I-to—e,t0+£] into R"

with disjoint images in &N provided that Yj n {qt, t € [—to—c,

t +e}} is emoty, j = 1,2.

0
The proof of the above is similar to a lemma in [7) and shall be
omitted.
Lemma 6.2. For f € xk+l, k > 1 there is an arbitrarily small g(*) €Xk -
such that g =0 on T U a(l) U w(T) and x(t) = f'(qt)xt + g'(qt)xt ;_j:
.~ .

has exponential trichotomies in (—m,+tO] and [—to,+w). e

Proof. We first construct a linear perturbation to (5.1). There exists :“iﬂ

Bl(') € Ck(R,ﬁ) with compact support in J = (-to-s,to+e) and arbitrarily

small such that L(t) + Bl(t) satisfies the H-O property on [-to,tol. This
is seen from Lemma 4.1, followed by a multiplication of a c® cut-off func-
tion. We claim that an additional perturbation ABl(t) can be made such

that B, + 4B, () = Bo(t), L(t) + B, (1) satisfies the H-O property on e

[—to,tol and B2(t)<';t =0 for all t € R. To see this, consider the map

Bl(t) > (), Ck(J,ﬂ) - Ck(J,Rn) given by &(t) = Bl(t)ét. This map has

compact support in J. Let N be a large number such that 6N embeds

{qt,t€.1} into RnN. We can find a finite set of integers ({k ,...,km},

1
0 < ki < N-1 and open intervals {Il,...,Im} which covers J and

é(t-kir/N) > €y >0 in Ii' Also, in Ii’ we can solve the equation

W, = q(t-kir/N) for t = E(wk ). There is a C  partition of unity {gi}
i i m
on J subordinate to {Ii}, i=1],...,m, and E gi(t) =1 for t € J.
l

Let ABl(t): cl{~r,0] ~» R® be defined as

m
. . 2
BB (t)¢ = -i§1 £, (£)<qt-k x/N) ;¢ (=k,T/N)>2 () /] [qlt-k x/N) ||°.

- . . e s e em
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': Then ABI(-) € Ck(J,m: and depends continuously on £(+) € Ck(J,Rn). :;;
' Moreover, ABl(t)qt = -2(t); hence, (Bl(t)+ABl(t))C.1t = 0 for all :ttﬁ
.'_\':
o t € R. =~
- The support of B, (t) = B (t) + 8B, (t) has some overlap with ;33
(-w,—tol and [t0,+w). However, from Lemma 4.3, Q(t) = (L(t)+82(t))xt -
, has exponential trichotomies in (-w,~t0] and [t0,+x) if Bz(t) is
;~ small. Moreover, by Lemma 4.1, $.2, 2.2 and 2.3, the domain of the _f
exponential trichotomies is extended to (—w,tO] and [-to,+w). &?:
The proof of Lemma 6.2 is fulfilled if we prove the following lemma. i f
Lemma 6.3. If B(*) € Ck(R,ﬂ) with support in J = (—to-s,to+s) and e
o . y o
. B(t)qt = 0, and the orbit segment {qt, t € [-to-e,to+e]}, has no inter- ,
K section with o(l) and w(T), then one can find g(+) € xk such that -
‘: = ™ . v =
= g 0 on T U Yy u Y, and g (qt) B(t), t € R.
- Proof. Let Ui, i=1,...,m, be an open covering of {Gth: t € J} in
. nN i ™ = . = .
- R, with U, 8 (a(T) U w(M) = @ Let U N {§a:t€R}={5g: teI}.
- Let B(t)¢ = J dnB(t,9)¢(6). For 6N¢ € Ui' we define =
x -r =
o
gi(C) = J dnB(t(ﬂk,6N¢)'e)(¢(6)—q(t(ﬂk.6N¢) + 6)).
~r i i
where t = t(wk ) 1is the solution for W, = q(t-kir/N). Direct
i i
computations show that :
0 0 . a S
: 9;(q)¢ = J-rdnB(t.eM - J—rdnB(t.e)q(ue) a;;— me Syo- .:A‘Jj.-
- i

The last term vanishes since B(t);;t = 0. Let gi(w), i=1...,m be

m
a partition of unity in R™  subordinate to {Ui} such that Zgi(w)=l
1

M - . - - - - . . - LN -
s Y O S o R e S R T A TL AL IO P R
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for w being in a neighborhood of {6th: t€J} in RnN. Then

m
q(¢) = X Ei(5N¢)gi(¢) is the desired perutrbation.

=

+
Theorem 6.4. Let I = max{-indT,0}, £ € x*'%, k>1. If T isa

heteroclinic orbit of (1.1) and is in general position, then f €

w1, a ! submanifold of ¥} with codim M*}(1) = 1. The

equation i(t) = f(xt) has a heteroclinic orbit in a neighborhood of
k+1
X

TUa(l) Uw(l) and f is close to f in if and only if £ €

k+ . . ‘s . .
M l(.I). If T is not in general position, there exists a perturbation

g € Xk, arbitrarily small and ' is a heteroclinic orbit in general

position of the perturbed equation i(t) = f(xt) + g(xt).

Moreover, if indl > 0 and T 1is in general position (transverse)

and B is the set of heteroclinic orbits of (1.1) near T, then H N

u . LAy . u . s
wloc(a(r)) is an (indTl)-submanifold of wloc(a(r)). If, in addition,

the flow near T 1is one-to-one, then H is an immersed (indTl)-submanifold.

Proof. We first observe that being in general position is rough for

the perturbations that do not destroy the heteroclinic orbit:; that is,

. PR . k+ . . . p
if f 1is close to f in ¥ 1 and with a heteroclinic orbit T <close

to T which is in general position, then ' is in general position.
Nothing has to be proved if T is transverse. Suppose T 1is in
general position and ind T'<0, I > 0. We want to show that f € Mk+1(I).
In this case é(t) is the only bounded solution of (5.2) not in C{vy,~v)

and there are no solutions of (5.1) in C(y,-y). Thus, the bifurcation

functions Gj(a,u) in (5.13) will depend only on a,u. By Lemma (5.1),

there exists a bounded solution of (5.2), denoted by wl(t), not in Cl(y,—y)

and there are d*-1 bounded independent solutions ey, 3 2,...,8* in

[P
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Cl(n,-y), which together with wl(t), form a basis of the bounded sclutions
d*
of (5.2). From Lemma 5.2, 361(0,0)/3a # 0. Let g(*) = Z ngQ(i). From

i=1

(5.16), an/agi = J tj(t)gl(qt)dt. Using the technique in [8), we can find

Ck functions ;n: RnN + R" such that, if gl(¢) = gR(ENé), then
P
. i=1, o
{J v (t)qi(qt)d%, is nonsingular. Moreover, gﬂ(pi,t) =0
= £=1,...,4*
i=1,2. Details are omitted. We solve o = a(EQ) from Gl(a,el) = 0.
For j = 2,...,a*, BG](0,0)/au = 0. Therefore,
ac?(0,0) _ 367(0,0) | 36°(0,0) du _ 367(0,0)_ e @ rde. =2 e
de2 Bsi da dr»:’Z 352 o 9 9% r rett

. o x
de(0,0)} J=1,...,d

and the matrix { 3
€ 2=1,...,d*

has rank d*-1 = I. This shows
that f € Mk+1(1).
Now suppose I is not in general position. By Lemma 6.2, we

assume that f € xk, f'(qt) € Ck(R,ﬂ), and (5.2) has exponential tri-
chotomies in (—w,tO] and [to,+w). We use Lemma 6.1 to prove that
there is a perturbation eg(¢) to make T a heteroclinic orbit in
general position. For this, observe that ;;(t) = P;(t) + P;(t),
i;(t) = P_(t), t € (-=,t ] and ;:(t) = P8, %:(t) = pl(e) + Pl(o)
define shifted exponential trichotomies in (-w,tO] and [-t0,+m).
In the notation of Lemma 6.1, nothing is to be proved if 9{5;(0) n
g?ﬁ;(O) is of dimensicn b = 1; that is, spanned by é(t). I1f not,

let b > 1 and yz = éo and {yé....,yg-l

,yg} be a basis in é?P;(O)
~+

n g?Ps(O). It is clear that if e = 0, T is transverse. Thus, we

assume e > 0. Let a = min(b-l,e), and ¢B(t) be the perturbation

determined by Lemma 6.1. Since eB(t)c.;t = 0, by Lemma 6.3, we can find

g € xk such that g =0 on T U o(l') U w(l') and g'(qt) = ¢B(t).
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For the perturbed equation, T is clearly in general position. There are

two cases. If b-1 > e, then ind T > 0, and T 1is transverse with

respect to the perturbed equation. If b-l < e, then the perturbed equation
has é(t) as the unique bounded solution for its linear variationa!

equation. Thus, I 1is in general position after perturbation.

The last part of the theorem follows from (5.13) and (5.14). For,
in that case, d* = 1, d = indl', one can choose |k| < k, k € Rd in an
arbitrary manner and obtain o from (5.13) since 3G/3a ¥ 0. This com-

pletes the proof of the theorem.

The bifurcation functions Gj and results similar to Theorem
6.4 are easier to obtain in the other three cases in which T 1is a
heteroclinic orbit of (1.1) and a(T) and w(l') are hyperbolic:

1) a(T) and w(T) are equilibria.
2) a(T) 1is an equilibrium and w(T) is a periodic orbit.
3) a(T) 1is a periodic orbit and w(T) is an equilibrium.

In case 1), exponential dichotomy is employed and no frequency B8

and phase variation o are needed. However, since gq(t) € A#F(y,-Y),

. d-
we let x(t) = q(t) + z(t), with z(t) € X &)[y}...,y 1], where
. - k+1
{q,yl,...,yd l} is a basis of A#F(y,-y) and ZQ/VF(Y,-Y) =C (y,=v).
d-1 i
Then we assume z = z* + ) k,y" with z* €.
1

In case 2) and 3), we need B(t,u) for only one side and by a
proper phase shift we assume that xu((l+8)t) - p:(t) as t > +x or
-» for i =1,2.

The following is true for a(l') and w(T') being hyperbolic periodic
orbits or equilibria, with general position being defined in an obvious

way.

. N . . ‘W e e '4. ..' ., - . . . .‘-.' . - - L.~ T ST et e T e '>~ - Y .--4q-~ LR -t - . - .~ - .
e e T T Lt T O PRI Mol - .
IR W I S W P S i P R LA A LR Sl S i T g SR Tl Sy TR AT PP T AL e I LWL WA WA VR R WA A W W WS




=i

Theorem 6.5. Let Ind T = dim Wo L) - dim ®

S

N SR O Y

u

loc(u(l")) + dim - (7)) - 1.

lo

Then the results of Theorem 6.4 are valid with a(T) and w(l) being

hyperbolic periodic orbits or equilibria.

Completion of proof of Theorem 5.4. We owe the readers a proof of trans- X
0

versality in Theorem 5.4. If the heteroclinic orbit T'" is transverse,

. o ‘

then, for a small perturbation g(¢) to g(¢,u’), there is a hetero-
- 6]

clinic orbit TI?  which is within O(lg|) of T* and

the phase variation a(g) 4is also within O(lg|) to of. conversely,

0 0

0
if we denote Tu = U , and if Tu is not transverse, we can firnd

xU
t>0"t
a family of perturbations c§1(¢) to g(¢,u°) such that trajectories
0 .
starting from w‘;oc(a(I‘u )} are moved to a direction transverse to RO
u 0 s ul . . . :
T™ (a(T" )) + TW (w(T" )). Thus, we either eliminate the intersection of
u 10 s u9 . .
W (a(T” )) and W (w(T” )) or move it to a distance > O(Isgll). To show

the existence of such él, we use the technique in proving Theorem 6.4 to

k+1

construct a él € X such that él = 0 in some neighborhcods of o(T)

(~v,v). Let t. >0 be sufficiently :}.-“

- 0
and w(T), gl(x? ) € HF o

L+Dg (*,u0)

large and consider the solution =x(t,e) of

. 0 .
x(t) f(xt) + g(xt,u ) + sgl(xt)

u0

x(t) = X (8), t< -t

It is not difficult to show that (3x(t,e)/d), ¢ HP_(£) + (i,

n
—toxg?ﬁu(-to)) where Ps and Pu are projections associated with the
shifted exponential dichotomies in (—m,to] and [to,+W) for the linearized

0 ~
equation around TU . Therefore, ¢ is the desired perturbation.
%
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On the other hand, we consider the extended perturbations gl(:.zlg)
1

Tt e N Lttt e, ey
' . Tt
. .

If the matrix

~ ~ +
= g(¢,u) + g{;), with the parameters (u,g) € X x Xk

o« o
R NN
AN

-y

in (5.15) has rank d%*, then, for small é, there exist o0 + 8a, kC+6k

| such that G2 (a®+83,k%+3k,.0,9) =0, 3 = 1,...,d%, and &a, &k = C('g').

- N 0
Therefore, there is a new heteroclinic orbit re, 0(|g|) near ¥ and

with a phase variation o(3), O(|g|) near al. Conversely, if the matrix
]
¥ in (5.15) has rank < d*, without loss of generality, let 3G o(ac,ko,uo)/}ki
J
= 0, 3G O(GO,RO,UO)/SQ =0, i=1,...,d. For the extended family of per-

J -
turbations, it is clear that 2dG °(a°,k°,u°,0)/ag # 0 from the proof of
L Theorem 6.4. Thus, there are small g such that either we cannot find
3 -
o, k near al, k¥ such that ¢ o(u,k,uo,g) = 0, or they are moved to a

distance > O(lél) to o, k0. The heteroclinic orbit T'? is moved to

-3

a distance > 0(|g|) in the latter case if we can show that 9z/3a,

L

0
3z/aki and 9x (t)/%t are linearly independent. It is obviously true

when ol = L0 = k0 = 0, for then 3z*/3q

az*/aki = 0, and Jw/oa =

d . .
I r. (typ,(t) and 2 (5 k.yl) = yl(t), i 1,...,d4. The linear independence
2 2 aki 1 i

holds for o, u0, k0 being small.
We have two characterizations by which the pertrubation g will not

0 ~
' break the heteroclinic orbit TV and only move it to a distance < O(]gl).

0
By comparison we see that the transversality of Tu is equivalent to

the rank of the matrix in (5.15) being Aa*.
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